by Zoran Horvat

Dec 14, 2014

In previous article titled LINQ Expression to Test If a Number is Prime we have seen that we can test whether a given number is prime by executing the following LINQ expression:

```
bool isPrime =
Enumerable.Range(2, (int)Math.Sqrt(number) - 1)
.All(divisor => number % divisor != 0);
```

This expression can be used as part of the larger query which returns a collection of all prime numbers that can be represented with the variable of type int. Here is the expression:

```
IEnumerable<int> primes =
Enumerable.Range(2, Int32.MaxValue - 1)
.Where(number =>
Enumerable.Range(2, (int)Math.Sqrt(number) - 1)
.All(divisor => number % divisor != 0));
```

Note that Enumerable.Range is instructed to take all integer numbers between 2 and maximum possible integer value. Would that be inefficient? Well, no, because none of the numbers in this particular sequence will be evaluated until actually requested. The whole sequence of prime numbers and the inner sequence it relies on will be evaluated lazily, which means that no CPU or memory will be used until needed.

Let's see a couple of examples of using this expression.

```
Console.WriteLine("First 10 primes");
primes
.Take(10)
.ToList()
.ForEach(prime => Console.WriteLine(prime));
Console.WriteLine("Primes less than 100");
primes
.TakeWhile(p => p < 100)
.ToList()
.ForEach(prime => Console.WriteLine(prime));
Console.WriteLine("There are {0:#,###} primes smaller than 100,000",
primes.TakeWhile(p => p < 100000).Count());
Console.WriteLine("There are {0:#,###} primes smaller than 1,000,000",
primes.TakeWhile(p => p < 1000000).Count());
```

In all these statements we are querying the sequence of prime numbers until certain limit is reached - either by counting prime numbers, or by testing them against the largest prime that we want to take into account. Here is the output produced by these four queries:

` ````
First 10 primes
2
3
5
7
11
13
17
19
23
29
Primes less than 100
2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97
There are 9,592 primes smaller than 100,000
There are 78,498 primes smaller than 1,000,000
```

All the queries except the last one execute in no time. The last statement takes prime numbers less than one million and it takes a couple of seconds to evaluate. This particular example demonstrates where is the practical limit of using this kind of expression. Clearly, evaluation is suitable for smaller sets of prime numbers, say, up to 100,000.

Let's see a couple more examples that show how this sequence can be used:

```
var groups =
primes
.TakeWhile(number => number <= 100000)
.GroupBy(number => number 10000)
.Select(group =>
new
{
From = group.Key * 10000,
To = (group.Key + 1) * 10000 - 1,
Count = group.Count()
});
foreach (var group in groups)
Console.WriteLine("{0,6:#,##0}-{1,6:#,###}: {2,6:#,###} primes",
group.From, group.To, group.Count);
```

This statement prints out total number of prime numbers in the first ten ranges of 10,000 numbers each. It all becomes clear when we look at the output printed by this piece of code:

` ````
0- 9,999: 1,229 primes
10,000-19,999: 1,033 primes
20,000-29,999: 983 primes
30,000-39,999: 958 primes
40,000-49,999: 930 primes
50,000-59,999: 924 primes
60,000-69,999: 878 primes
70,000-79,999: 902 primes
80,000-89,999: 876 primes
90,000-99,999: 879 primes
```

We could count all the primes from the second thousand, i.e. between numbers 1000 and 1999, inclusive. Here is the statement:

```
Console.WriteLine("There are {0} primes in the second thousand.",
primes
.SkipWhile(number => number <= 1000)
.TakeWhile(number => number <= 2000)
.Count());
```

This statement prints:

` ````
There are 135 primes in the second thousand.
```

Next, we could sum up all the prime numbers less than 100,000:

```
Console.WriteLine("Sum of primes smaller than 100,000 is {0:#,###}",
primes.TakeWhile(number => number < 100000).Sum());
```

This statement prints:

` ````
Sum of primes smaller than 100,000 is 454,396,537
```

We could apply the same approach to summing up all prime numbers less than a million. But, this requires 64-bit integers, because summation of such large numbers would quickly end up in integer overflow. Here is the statement which first converts prime numbers to 64-bit integers and only then sums them up:

```
Int64 sum =
primes
.TakeWhile(number => number < 1000000)
.Select(number => (Int64)number)
.Sum();
Console.WriteLine("Sum of primes smaller than 1,000,000 is {0:#,###}", sum);
```

This statement produces output:

` ````
Sum of primes smaller than 1,000,000 is 37,550,402,023
```

If you wish to learn more, please watch my latest video courses

In this course, you will learn the basic principles of object-oriented programming, and then learn how to apply those principles to construct an operational and correct code using the C# programming language and .NET.

As the course progresses, you will learn such programming concepts as objects, method resolution, polymorphism, object composition, class inheritance, object substitution, etc., but also the basic principles of object-oriented design and even project management, such as abstraction, dependency injection, open-closed principle, tell don't ask principle, the principles of agile software development and many more.

More...

This course begins with examination of a realistic application, which is poorly factored and doesn't incorporate design patterns. It is nearly impossible to maintain and develop this application further, due to its poor structure and design.

As demonstration after demonstration will unfold, we will refactor this entire application, fitting many design patterns into place almost without effort. By the end of the course, you will know how code refactoring and design patterns can operate together, and help each other create great design.

More...

In four and a half hours of this course, you will learn how to control design of classes, design of complex algorithms, and how to recognize and implement data structures.

After completing this course, you will know how to develop a large and complex domain model, which you will be able to maintain and extend further. And, not to forget, the model you develop in this way will be correct and free of bugs.

More...

Zoran Horvat is the Principal Consultant at Coding Helmet, speaker and author of 100+ articles, and independent trainer on .NET technology stack. He can often be found speaking at conferences and user groups, promoting object-oriented and functional development style and clean coding practices and techniques that improve longevity of complex business applications.

- Making Your C# Code More Object-oriented
- Beginning Object-oriented Programming with C#
- Collections and Generics in C#
- Design Patterns in C# Made Simple
- Refactoring to Design Patterns
- Mastering Iterative Object-oriented Programming in C#
- Making Your C# Code More Functional
- Making Your Java Code More Object-oriented
- Writing Purely Functional Code in C#
- Tactical Design Patterns in .NET: Creating Objects
- Tactical Design Patterns in .NET: Control Flow
- Tactical Design Patterns in .NET: Managing Responsibilities
- Advanced Defensive Programming Techniques
- Writing Highly Maintainable Unit Tests
- Improving Testability Through Design

- What Makes List<T> So Efficient in .NET?
- Nondestructive Mutation and Records in C#
- Understanding Covariance and Contravariance of Generic Types in C#
- Using Record Types in C#
- Unit Testing Case Study: Calculating Median
- The Fast Pencil Fallacy in Software Development
- More...